Now, Jörg Wrachtrup, from @IQSTpress on nanoscale quantum measurement #LTQI
@IQSTpress Jörg Wrachtrup: Spins can be used to measure chemical parameters, temperature, mechanical forces (through deformation of hosting Crystal), electric or magnetic fields. #LTQI
Jörg Wrachtrup: the magnetic field sensitivity is 10⁻⁸ T/√Hz (single nuclear spin, 10 nm away).
It can be used for single protein spectrosopy. (Shi et al. Science 347 science.sciencemag.org/content/347/62… ) #LTQI
Jörg Wrachtrup: wants to use this to measure brain activity (1 to 100 nT) with a light set-up. The competition is vapor based systems, from Knappe (NIST) #LTQI
Jörg Wrachtrup: For NMR, one needs Hz resolution at GHz. To achieve this, use several nuclear spins in the diamond lattice as quantum memory and use them to perform a QFT like process and achieve high resolution. #LTQI
Jörg Wrachtrup: using a thin layer of NV spins instead of a single spin allows to make MRI images. #LTQI
Jörg Wrachtrup also takes “steps out of the lab” by building prototypes #LTQI
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Now at #JapanEUWorkshop, Shuntaro Takeda on A strategy for large-scale optical quantum computing #LTQI
Shuntaro Takeda: use a deterministic approach, a loop to increase scalability. Determinism is brought by continuous variable (CV) system, which need 5 gates to be universal: 3 linear, squeezing and cubic gate (the hard one) #LTQI#JapanEUWorkshop
Shuntaro Takeda: both discrete CNOT and CV cubit gates need χ⁽³⁾ and are therefore difficult, but the latter is at least deterministic. #LTQI#JapanEUWorkshop
Now at #JapanEUWorkshop , Anthony Laing on Photonic simulations of molecular quantum dynamics #LTQI
Anthony Laing essentially looks a photnic simulation of vibrational modes of molecules
Anthony Lang looks at selective dissociation with a single quantum of vibration NH₃→NH₂+H. These molecular transition can be manipulated through control of the wavepacket. #LTQI
Now Erika Kawakami on Capacitive read-out of the Rydberg states towards the realization of a quantum computer
using electrons on helium #LTQI#JapanEUWorkshop
Erika Kawakami: Why use electrons on helium? The system is clean: electrons float in vacuum, far prom nuclear spin and other charges. Electron qubits are 1µm away, which will be useful for surface codes #LTQI#JapanEUWorkshop
Erika Kawakami: The spin-state is used a qubit state, the rydberg states are auxiliary states. T₂=100 s for spin states. 1 qubit gates through ESR; 2-qubit gate using Coulomb interacton #LTQI#JapanEUWorkshop
Now, Eleni Diamanti on Practical Secure Quantum Communications #JapanEUWorkshop#LTQI
Eleni Diamanti: The current solution to secure network links: Symmetric + Asymmetric cryptography. Recent development to fight the threat of quantum computers: postquantum cryptography. Quantum cryptography offers the advantage to be future proof #LTQI
Now, Yoshiro Takahashi from @KyotoU_News on Advanced quantum simulator with novel
spin and orbital degrees of freedom #LTQI
@KyotoU_News Yoshihiro Takahashi: With ¹⁷³Yb nuclear spins, we have a SU(6) Fermi-Hubbard model. They observe formation of SU(6) Mott insulator. #LTQI#JapanEUWorkshop
@KyotoU_News Yoshihiro Takahashi ’s next traget: SU(6) quantum magnetism. A difficulty is measuring spin correlation, which is achieved through singlet-triplet oscillation compined with photo association #LTQI#JapanEUWorkshop
Now, Christian Groß, on quantum simulation of the Hubbard model, from hidden correlations to magnetic polarons. #LTQI
Christian Groß simulates Hubbard model with cold atoms in optical lattices. Li atoms hop with amplitude t. Currently, they only have global control, no local control. #LTQI
Christian Groß observes the atoms with quantum gas microscopy. He observes a single plane desctructively through a high NA objective every 30s. #LTQI