Now at #JapanEUWorkshop , Anthony Laing on Photonic simulations of molecular quantum dynamics #LTQI
Anthony Laing essentially looks a photnic simulation of vibrational modes of molecules
Anthony Lang looks at selective dissociation with a single quantum of vibration NH₃→NH₂+H. These molecular transition can be manipulated through control of the wavepacket. #LTQI
Anthony Laing: the coupling of local two vibration modes can be modelled by single photons interfering on a beamsplitter. With n modes, the probabilities correspond to a the permanent of a matrix. For 10 photons, it’s the sum of >10 M terms #LTQI#JapanEUWorkshop
Anthony Laing’s programmable boson sampling chip is made at NTT (sorry, I didn’t catch the researcher’s name). He translate the H₂CS molecule to the chip. #LTQI#JapanEUWorkshop
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Now at #JapanEUWorkshop, Shuntaro Takeda on A strategy for large-scale optical quantum computing #LTQI
Shuntaro Takeda: use a deterministic approach, a loop to increase scalability. Determinism is brought by continuous variable (CV) system, which need 5 gates to be universal: 3 linear, squeezing and cubic gate (the hard one) #LTQI#JapanEUWorkshop
Shuntaro Takeda: both discrete CNOT and CV cubit gates need χ⁽³⁾ and are therefore difficult, but the latter is at least deterministic. #LTQI#JapanEUWorkshop
Now Erika Kawakami on Capacitive read-out of the Rydberg states towards the realization of a quantum computer
using electrons on helium #LTQI#JapanEUWorkshop
Erika Kawakami: Why use electrons on helium? The system is clean: electrons float in vacuum, far prom nuclear spin and other charges. Electron qubits are 1µm away, which will be useful for surface codes #LTQI#JapanEUWorkshop
Erika Kawakami: The spin-state is used a qubit state, the rydberg states are auxiliary states. T₂=100 s for spin states. 1 qubit gates through ESR; 2-qubit gate using Coulomb interacton #LTQI#JapanEUWorkshop
Now, Eleni Diamanti on Practical Secure Quantum Communications #JapanEUWorkshop#LTQI
Eleni Diamanti: The current solution to secure network links: Symmetric + Asymmetric cryptography. Recent development to fight the threat of quantum computers: postquantum cryptography. Quantum cryptography offers the advantage to be future proof #LTQI
Now, Yoshiro Takahashi from @KyotoU_News on Advanced quantum simulator with novel
spin and orbital degrees of freedom #LTQI
@KyotoU_News Yoshihiro Takahashi: With ¹⁷³Yb nuclear spins, we have a SU(6) Fermi-Hubbard model. They observe formation of SU(6) Mott insulator. #LTQI#JapanEUWorkshop
@KyotoU_News Yoshihiro Takahashi ’s next traget: SU(6) quantum magnetism. A difficulty is measuring spin correlation, which is achieved through singlet-triplet oscillation compined with photo association #LTQI#JapanEUWorkshop
Now, Christian Groß, on quantum simulation of the Hubbard model, from hidden correlations to magnetic polarons. #LTQI
Christian Groß simulates Hubbard model with cold atoms in optical lattices. Li atoms hop with amplitude t. Currently, they only have global control, no local control. #LTQI
Christian Groß observes the atoms with quantum gas microscopy. He observes a single plane desctructively through a high NA objective every 30s. #LTQI
Now, Carlo Reita on “Towards scalable silicon quantum computing” #LTQI
Carlo Reita‘s work is on quantum dots in Si. The initial state is easy to set using electrostatic gates. The manipulation and the readout are also done with elcetrostatic gates #LTQI
As a CMOS person, Carlo Reita is not scared by 100 millions of objects, all the same. We just need to find how to make a few of them. #LTQI