Now at #MCQS, Valentina Parigi from @lkb_lab on Reconfigurable optical implementation of quantum complex networks #LTQI
@lkb_lab .@vparigi81’s synchonously pumped OPO (SPOPO) leads to a complex multimode entanglement structure. She then uses multimode homodyne detection to characterize the corresponding 16-mode covariance matrix.
Eigenmodes found from diagonalization are Hermite-Gauss modes #LTQI#MCQS
@lkb_lab@vparigi81 .@vparigi: showed that all 151k+ partitions of 10 frequency modes are not separable: we are indeed in a multipartite entanglement case. #LTQI#MCQS
@lkb_lab@vparigi81@vparigi .@vparigi81 : The Bloch Messiah decomposition rewrites the operation S done by the SPOP as S=R₁^T Δ R₂ , where R are basis change, and Δ is squeezing. Since input is vaccum, we can forget R₂, so Sp R₁^T Δ.
She applies it to cluster states #LTQI#MCQS
.@vparigi81 now looks at quantum complex networks, through cluster/graph states. She looks at the network dynamics of harmonic oscillators with spring like coupling following a graph #LTQI#MCQS
.@vparigi81 wants to use her system to probe several kind of 50-nodes complex networks. Work is being done to allow the detection of this many nodes (currently 16 modes) #LTQI#MCQS
.@vparigi81 also want to introduce non-Gaussian operations in her networks, via photon subtraction #LTQI#MCQS
@lkb_lab .@vparigi81’s talk at #MCQS on Reconfigurable optical implementation of quantum complex networks is avaiable at
Now at #JapanEUWorkshop, Shuntaro Takeda on A strategy for large-scale optical quantum computing #LTQI
Shuntaro Takeda: use a deterministic approach, a loop to increase scalability. Determinism is brought by continuous variable (CV) system, which need 5 gates to be universal: 3 linear, squeezing and cubic gate (the hard one) #LTQI#JapanEUWorkshop
Shuntaro Takeda: both discrete CNOT and CV cubit gates need χ⁽³⁾ and are therefore difficult, but the latter is at least deterministic. #LTQI#JapanEUWorkshop
Now at #JapanEUWorkshop , Anthony Laing on Photonic simulations of molecular quantum dynamics #LTQI
Anthony Laing essentially looks a photnic simulation of vibrational modes of molecules
Anthony Lang looks at selective dissociation with a single quantum of vibration NH₃→NH₂+H. These molecular transition can be manipulated through control of the wavepacket. #LTQI
Now Erika Kawakami on Capacitive read-out of the Rydberg states towards the realization of a quantum computer
using electrons on helium #LTQI#JapanEUWorkshop
Erika Kawakami: Why use electrons on helium? The system is clean: electrons float in vacuum, far prom nuclear spin and other charges. Electron qubits are 1µm away, which will be useful for surface codes #LTQI#JapanEUWorkshop
Erika Kawakami: The spin-state is used a qubit state, the rydberg states are auxiliary states. T₂=100 s for spin states. 1 qubit gates through ESR; 2-qubit gate using Coulomb interacton #LTQI#JapanEUWorkshop
Now, Eleni Diamanti on Practical Secure Quantum Communications #JapanEUWorkshop#LTQI
Eleni Diamanti: The current solution to secure network links: Symmetric + Asymmetric cryptography. Recent development to fight the threat of quantum computers: postquantum cryptography. Quantum cryptography offers the advantage to be future proof #LTQI
Now, Yoshiro Takahashi from @KyotoU_News on Advanced quantum simulator with novel
spin and orbital degrees of freedom #LTQI
@KyotoU_News Yoshihiro Takahashi: With ¹⁷³Yb nuclear spins, we have a SU(6) Fermi-Hubbard model. They observe formation of SU(6) Mott insulator. #LTQI#JapanEUWorkshop
@KyotoU_News Yoshihiro Takahashi ’s next traget: SU(6) quantum magnetism. A difficulty is measuring spin correlation, which is achieved through singlet-triplet oscillation compined with photo association #LTQI#JapanEUWorkshop
Now, Christian Groß, on quantum simulation of the Hubbard model, from hidden correlations to magnetic polarons. #LTQI
Christian Groß simulates Hubbard model with cold atoms in optical lattices. Li atoms hop with amplitude t. Currently, they only have global control, no local control. #LTQI
Christian Groß observes the atoms with quantum gas microscopy. He observes a single plane desctructively through a high NA objective every 30s. #LTQI